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Abstract

Background: Medical advances in managing patients with chronic heart disease (HD) permit the co-occurrence of other chronic
diseases due to increased longevity, causing them to become multimorbid. Previous research on the effect of co-occurring diseases
on mortality among patients with HD often considers disease counts or clusters at HD diagnosis, overlooking the dynamics of
patients’ disease portfolios over time, where new chronic diseases are diagnosed before death. Furthermore, these studies do not
consider interactions among diseases and between diseases, biological and socioeconomic variables, which are essential for
addressing health disparities among patients with HD. Therefore, a mapping of the effect of combinations of these co-occurring
diseases on mortality among patients with HD considering such interactions in a dynamic setting is warranted.

Objective: This study aimed to examine the effect of the co-occurring diseases of patients with HD on mortality, modeling their
dynamically expanding chronic disease portfolios while identifying interactions between the co-occurring diseases, socioeconomic
and biological variables.

Methods: This study used data from the national Danish registries and algorithmic diagnoses of 15 chronic diseases to obtain
a study population of all 766,596 adult patients with HD in Denmark from January 1, 1995, to December 31, 2015. The time
from HD diagnosis until death was modeled using an extended Cox model involving chronic diseases and their interactions as
time-varying covariates. We identified interactions between co-occurring diseases, socioeconomic and biological variables in a
data-driven manner using a hierarchical forward-backward selection procedure and stability selection. We mapped the impact
on mortality of (1) the most common disease portfolios, (2) the disease portfolios subject to the highest level of interaction, and
(3) the most severe disease portfolios. Estimates from interaction-based models were compared to an additive model.

Results: Cancer had the highest impact on mortality (hazard ratio=6.72 for male individuals and 7.59 for female individuals).
Excluding cancer revealed schizophrenia and dementia as those with the highest mortality impact (top 5 hazard ratios in the
11.72-13.37 range for male individuals and 13.86-16.65 for female individuals for combinations of 4 diseases). The additive
model underestimated the effects up to a factor of 1.4 compared to the interaction model. Stroke, osteoporosis, chronic obstructive
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pulmonary disease, dementia, and depression were identified as chronic diseases involved in the most complex interactions, which
were of the fifth order.

Conclusions: The findings of this study emphasize the importance of identifying and modeling disease interactions to gain a
comprehensive understanding of mortality risk in patients with HD. This study illustrated that complex interactions are widespread
among the co-occurring chronic diseases of patients with HD. Failing to account for these interactions can lead to an oversimplified
attribution of risk to individual diseases, which may, in cases of multiple co-occurring diseases, result in an underestimation of
mortality risk.

(JMIR Cardio 2025;9:e57749) doi: 10.2196/57749
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Introduction

Background
Driven by the advancements in diagnostic tools and medical
treatments, the mortality of patients with chronic heart disease
(HD) has decreased considerably [1]. However, with a prolonged
life span comes a risk of developing additional chronic diseases
and complications to their HD [2], causing them to become
multimorbid [3]. Multimorbidity is highly prevalent among
patients with HD [2,4,5], and the increasing disease burden may
modify time to death [6].

Recent research has identified the most prevalent comorbidities
in patients with HD and how they affect mortality and other
adverse health-related outcomes [5,7-9]. However, only a few
studies have considered the effect of several diseases in the
same person. Among these studies, there is a large variety in
which diagnoses are considered and which statistical methods
are applied. The studies that consider multimorbidity either
restrict their analyses to a subset of diagnosis combinations [7]
or group diagnoses into multimorbidity clusters at baseline
before analyzing the effects of the extracted clusters [5]. Despite
modeling disease interactions, these kinds of analyses fail to
capture the crucial dynamics in the HD disease trajectories,
where additional diseases are cumulatively diagnosed before
death [10], causing an augmented risk profile for the patient.
As the chronology of disease onset has been associated with a
change in mortality among common diagnoses [11], it is thus
essential to consider this dynamic development when analyzing
effects. Due to the high prevalence of multimorbidity among
patients with HD, the unique combination of chronic diseases
that a patient has at any given time—referred to as the disease
portfolio—is not static. Instead, it evolves over the observation
period as new chronic diseases develop. This dynamic expansion
reflects the progressive accumulation of chronic diseases in an
individual following their HD diagnosis until death. As only a
few studies consider these dynamics, there is a need for a
thorough, large-scale study of the impact of disease interactions
on mortality, modeling such a dynamic expansion of the
patients’disease portfolios. Such an investigation would enable
obtaining a deeper understanding of how the complexity of
disease progression in patients with HD affects mortality over
time.

The significance of understanding the effects of the emergence
of multimorbidity over an individual’s life span has previously

been highlighted [3,12,13]. However, rather than treating
multimorbidity as a singular risk factor, we took a more nuanced
approach by dissecting the effects of multimorbidity based on
the diseases appearing in the disease portfolio, recognizing that
each combination of chronic diseases can affect mortality
differently. Furthermore, as many chronic diseases have similar
biological and socioeconomic risk factors, knowledge of the
interplay between the impact of these is essential and can be
used for possible preventive interventions and the development
of guidelines for relevant coexisting diseases [14,15]. For
instance, consider a disease portfolio comprising HD and
osteoporosis. The impact on the mortality hazard rate may vary
between men and women. Expanding on this example, the effect
of socioeconomic position may differ depending on both sex
and the presence of osteoporosis in the portfolio. These
variations in effects represent interactions in modeling terms.
As such, identifying and emphasizing interactions between
chronic diseases and demographic factors can shed new light
on the impact of pathophysiological pathways on mortality.

Objectives
This large-scale study is based on data from the total adult
Danish population recorded in nationwide primary and
secondary health care registries, including medical diagnoses,
medications, educational attainment level, and health care use.
We used an extended Cox model with time-varying covariates
to model time until death for individuals diagnosed with HD
considering their dynamically expanding disease portfolios. In
our model, the hazard ratio (HR) of a disease portfolio is
constant. In contrast, the HR of an individual changes
dynamically when the individual obtains a new portfolio by
developing a new chronic disease (Figure 1).

We conducted a model and data-driven selection of interaction
effects. Subsequently, we studied the impact on time to death
according to the (1) most frequently occurring disease portfolios,
(2) most complex disease portfolios in terms of order of
interactions, and (3) disease portfolios with the highest hazards
relative to only HD.

We recognize the inherent complexity in interpreting interaction
effects, especially in the case of higher-order interactions
involving multiple factors. However, to emphasize the
importance of modeling interaction effects, we also present a
comparative analysis of effect estimates for disease portfolios,
contrasting our interaction model with a simpler model in which
interactions are excluded. The differences observed in these
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comparisons serve to underscore the crucial role of modeling
interactions in medical research.

Throughout this paper, we use a bracket notation to represent
the disease portfolio of a specific patient with HD. For example,
a patient with HD, diabetes, and hypertension is denoted by the
portfolio [diabetes, hypertension]. If the patient with HD also
has high cholesterol, their disease portfolio is [diabetes, high

cholesterol, hypertension]. As all individuals in the study
population had HD, we use the term disease portfolio without
mentioning the coexisting HD diagnosis in the notation. We
use the terms dyads, triads, tetrads, and pentads to describe
disease portfolios of size 2, 3, 4, and 5, respectively, with size
being the number of chronic diseases in the portfolio including
HD.

Figure 1. Example of how the statistical model works. (A) Illustration of an event sequence in which a hypothetical patient with heart disease (HD)
receives the diagnosis of HD at time 0 and, subsequently, the hypertension, stroke, and cancer diagnoses at different times (measured in years following
HD diagnosis) before death. (B) The corresponding longitudinal development of the hazard ratio of the patient relative to a theoretical patient who only
has HD and is not multimorbid.

Methods

Data Foundation
All children born in Denmark or any new residents are, by law,
required to obtain a unique personal identification number,
which is stored in the Danish Civil Registration System [16].
The personal identification number can link information from
any additional Danish register at an individual level subject to
General Data Protection Regulation restrictions [17].
Information about chronic disease diagnoses was based on
diagnostic algorithms initially developed by the Research Center
for Prevention and Health at Glostrup University Hospital [18].
These algorithms cover 15 diagnoses based on their clinical
relevance that have been previously used in national reports of
chronic disease diagnoses in Denmark [19,20]. Moreover,
previous work with these diagnoses has shown prevalence
results comparable to those of other European studies [21]. The
algorithmic diagnoses are based on data recorded in 4 registries:
the Danish National Patient Register [22], the Danish Psychiatric
Central Research Register [23], the Danish National Prescription
Registry [24], and the Danish National Health Service Register
[25]. Therefore, a particular diagnosis can be given at a
particular time (with temporal granularity of days) based on
criteria for hospitalization diagnoses, medication, or repeated
use of specific health services. As such, a single diagnosis
corresponds to 1 disease and represents multiple Anatomical

Therapeutic Chemical or ICD-10 (International Statistical
Classification of Diseases, 10th Revision) codes with similar
treatments and organization of health care. Thus, the diagnosis
time stamps considered in this study are diagnostic time stamps
and should not be regarded as time stamps for disease onset. In
addition to the registries used for diagnostic time stamps, we
used the Danish Population Education Register [26] and the
Danish Register of Causes of Death [27] for information on
educational attainment and death.

Study Design and Population
Using our data foundation from the Danish registries, we
obtained a study population of individuals diagnosed with HD
covering the entire Danish adult population (aged ≥18 years)
at some point during the observation period from January 1,
1995, to December 31, 2015, which had been previously
analyzed [28]. These people were followed up on, and data
associated with visits to outpatient clinics, hospital stays,
primary sector health services, and prescriptions were collected
for each person throughout the observation period. To define
the study population, we applied algorithmic diagnoses (detailed
in Multimedia Appendix 1) to identify individuals diagnosed
with HD while determining diagnostic time stamps for 14
additional selected chronic diseases [21]. Thus, our inclusion
criterion was broad, encompassing all Danish adults (aged ≥18
years) who received an algorithmic diagnosis of HD during the
study period. No additional exclusion criteria were applied. Our
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outcome was time until death of any cause after the HD
diagnosis.

Statistical Analysis
The prevalence of each of the chronic diseases was calculated
at the time of HD diagnosis across all patients in the population.
Similarly, we calculated prevalences of the diseases throughout
the observation period by considering whether the condition
had occurred at all among the patients with HD.

The data were analyzed within a survival analysis framework,
with years following HD diagnosis as the time variable and an
event defined as all-cause mortality. As such, we denoted the
HD diagnosis time as t=0 and aligned our timescale accordingly,
meaning that time t=0 corresponds to potentially different age
times and calendar times for distinct individuals. In addition,
individuals lost to follow-up due to emigration or reaching the
end of the observation period were censored at these times.

The time-varying information on individual diagnoses;
information on sex (male or female), age, educational attainment
level (none, short, medium, long, missing, and missing before
1920); and calendar time were included as explanatory variables
in the analysis (refer to tables 1/2 in the study by Holm et al
[28]). We used an extended Cox model to estimate the effect
of these explanatory variables on mortality, allowing for the
inclusion of time-varying covariates. We classified our variables
into primary and intrinsic categories [29]. Primary variables,
such as the time-varying diagnosis indicators, cover variables
of paramount interest. Intrinsic variables define the study
individuals (ie, the variables sex, age, educational attainment
level, and calendar time). Interactions both between and within
each group of variables were considered. The numerical
variables were mean centered before analysis.

As the development of additional diagnoses is a continuous
process, the primary variables were allowed to change over
time. These variables were piecewise constant in time, being 0
when the diagnosis was not present and 1 when obtained and
onward in time. As the registries continuously cover clinical
events for all individuals over the observation period, these
diagnosis variables update at individual-specific time points
dictated by the (sequence of) events that trigger the algorithmic
diagnosis (Multimedia Appendix 1). An example of a potential
sequence of diagnoses is showcased in Figure 1.

In the extended Cox proportional hazard model [30], the hazard
hi for the ith individual at time t is given by the following
equation:

(1)

In this equation, h0(t) is the unspecified baseline hazard function
for a male individual with no education without any diagnoses
except HD. Xij(t) denotes the variable j for individual i (with
Xi(t) denoting a vector of all variables) at time t, with i=1,...,n.
The βj are the effect parameters. Due to h0(t) being unspecified,

these parameters are linked to the relative mortality hazard rate
of a variable as opposed to the absolute risk. Equation 1 assumes
that variables have proportionate effects on the hazard function
over time. We assessed this assumption for each variable by
examining Schoenfeld residuals [31]. In addition, as the effect
parameters βj do not depend on time, the hazard rate associated
with a particular combination of explanatory variables was
assumed to be the same across all time points.

To analyze the data, the following software was used: R (version
4.2.2; R Foundation for Statistical Computing), with the
packages survival (version 3.5-5), lava (version 1.7.1), glmnet
(version 4.1-6), and multcomp (version. 1_4-20).

Selection of Variables and Interactions
It is essential to account for diagnosis interactions as such
parameters serve to model the entire effect of disease portfolios
associated with mortality. Possible omitted interaction effects
from a model in which a significant interaction exists can result
in a misrepresentation of the relationship between the variables
and the time until death. It may also lead to bias in parameter
estimation [32,33].

A common way to perform variable selection is a backward
selection approach starting from a full model considering all
possible interactions, reducing it to a model that best explains
the observed data. However, such an approach was not
computationally feasible as we are in a big data setting with
numerous observations and countless potential variable
interactions. Instead, we considered 2 variations of a
forward-backward selection procedure to discover disease
interactions. As a sensitivity analysis, we also performed
variable selection using the stability selection methodology [34]
with the regularization-based least absolute shrinkage and
selection operator (LASSO) [35] approach.

In addition to the models including interaction effects, a model
solely consisting of the primary and intrinsic variables’ main
effects (and squared and cubic terms) was estimated for
reference.

We considered k-way interactions iteratively for k=2,..., M, with
M being a predetermined upper limit. The selection procedure
starts from an initial model including all main effects and works
in the following way for each value of k:

• Generate nc candidate variable additions obtained from the
current model by adding a single k-way interaction to an
already existing (k – 1)–way interaction, also adding
necessary lower hierarchical terms.

• Repeat until there are no candidate models below the cutoff:
(1) estimate each of the candidate models obtained from
adding any of the nc variables not already added to the
current model and compare with the current model using a
likelihood ratio test and (2) select the candidate model with
the lowest P value below the cutoff α/nc as the current
model.

• Clean up potentially masked significances in the k-way
selection path through backward selection using a test level
of α.
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The selection algorithm runs either until M-way interactions
are included or until no k-way interactions are selected in the
kth iteration. In the forward step of the selection algorithm, a
Bonferroni-adjusted cutoff is used to minimize the risk of false
discoveries as each variable addition is potentially tested for
inclusion nc times. We note that all considered models are
hierarchical, meaning that, if a model contains a 5-way
interaction among 5 variables, it also contains all possible 4-,
3-, and 2-way interactions among those variables.

Due to the allowance of any k-way interaction between and
among the primary and intrinsic variables, a possibly large
number of candidate models were included for each value of k.
Because of this, the selection forward step was relaxed such
that the candidate model P values were ordered from lowest to
highest after the first estimation for each value of k. In the
following estimations, variable additions were checked in this
order, immediately adding any interactions below the cutoff
while discarding insignificant terms. Before backward selection,
any discarded terms were included again through forward
selection. To introduce conservatism, all variable selections
were performed with α=.001. The resulting model with all
selected interactions was labeled as the ALL model.

In addition to the ALL model, the variable selection procedure
was run without relaxation of the forward step but only
considering interactions among the primary variables. We
labeled this as the disease interactions only (DIO) model.
Furthermore, we used a variation of the stability selection
framework [34], a method for improving variable selection in
high-dimensional, sparse environments. This method selects
variables repeatedly chosen on subsampled data through a
structure learning method such as the LASSO algorithm for the
Cox model [36]. We used a selection threshold of 0.9 following
the recommendation in the work by Meinshausen and Bühlmann
[34]. Each subsample included 10 randomly selected variables
considering all their possible interactions up to an order of 5.
This caused us to consider 3400 subsamples in total. We then
fit an unregularized Cox model using the stably selected terms
and performed backward selection to reduce the model using
all available data. The resulting model was labeled the stable
model. As a sensitivity criterion, we compared detected
interactions among the chronic diseases across the ALL, DIO,
and stable models. The additive model only including main
effects was labeled as the only main effects (OME) model.

Selecting Disease Portfolios
Due to the many possibilities when considering combinations
of the 14 co-occurring diseases, some of our presented results
are based on selected disease portfolios. These selections were
made based on 3 criteria: most common disease portfolios,
disease portfolios subject to the highest order of disease
interactions, and disease portfolios with the highest mortality
impact. The main results presented in this paper are based on
the ALL model. To illustrate the importance of modeling
interaction effects, the effect of specific disease portfolios in
the ALL model was compared to additive effects from the OME
model on the log-hazard scale.

Scenarios
As the considered diagnosis variables were subject to
higher-order interactions, effects were not apparent just from
the estimated parameters because the effect of a single diagnosis
varied across different levels of other diagnoses and intrinsic
variables. To supplement the effect of the selected disease
portfolios, the absolute mortality risk over time was estimated
for multiple scenarios using the estimated ALL model. We did
this to illustrate the modification of the risk profile over time
of an individual diagnosed with HD. Each scenario represented
the risk of a hypothetical individual whose disease portfolio
expands at predetermined time points following HD diagnosis.
The times at which the disease portfolio expanded in the
hypothetical scenarios were determined in a data-driven fashion
using gamma regressions, where the time points (at which the
first, second, or third expansion of the disease portfolio
following HD diagnosis occurred) were regressed on the
diagnoses in the sequence considered in the scenario. The
scenarios were constructed for patients who received their HD
diagnosis at mean age and calendar time levels.

Ethical Considerations
In this study, we used data from the national Danish registries,
which are protected by the Danish Data Protection Act, meaning
that they can only be accessed after application and subsequent
approval. This study did not require additional approval from
the Danish Research Ethics Committees or any informed consent
as it solely involved the use of national registry data, exempt
under the Scientific Ethical Committees Act. Danish registry
data are deidentified to protect the privacy of individuals.

Results

Characteristics of the Study Population
A total of 766,596 individuals diagnosed with HD were included
(n=406,792, 53.06% male). The mean age at the time of HD
diagnosis was 67.51 (SD 13.07) years for male individuals and
73.02 (SD 13.37) years for female individuals (further baseline
characteristics are available in table 2 in the work by Holm et
al [28]). At the end of the observation period, 57.95%
(444,233/766,596) were dead (222,112/406,792, 54.6% male
and 222,121/359,804, 61.73% female). Overall, the prevalence
of multimorbidity in the complete trajectories of each patient
with HD was 96.88% (742,688/766,596). This was an increase
compared to the multimorbidity prevalence at time t=0
(661,490/766,596, 86.29%). The prevalence of each of the 14
co-occurring diseases is presented in Figure 2. Overall,
hypertension, high cholesterol, and allergies were among the
most prevalent diseases in the HD population, with a lifetime
prevalence of 81.18% (622,323/766,596), 44.94%
(344,481/766,596), and 28.88% (221,385/766,596), respectively
(Figure 2; Multimedia Appendix 2). Differences in prevalence
by sex were large for some chronic diseases, particularly for
osteoporosis and depression, commonly occurring in female
individuals.
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Figure 2. Diagnosis prevalence according to sex. Prevalence is reported at the time of heart disease (HD) diagnosis and for the entire span of the
observed disease trajectories (Lifetime). COPD: chronic obstructive pulmonary disease.

Interactions
Following the inclusion of 5-way interactions, the ALL model
selection procedure terminated due to no 6-way interactions
being selected. All the primary and intrinsic variables were
present in the final model. Figure 3 illustrates statistically
significant (P<.001) interaction relationships between chronic
diseases detected in the ALL model. Connections between
diseases in the ribbon chart illustrate the 2 chronic diseases
appearing in an interaction, with the color depicting the
complexity of the interaction (darker color represents a
higher-order interaction). The figure shows all diseases
interacting, with some diseases involved in more complex
interactions than other chronic diseases. In total, 288 interactions
were present in the final model. The interaction relationships
between the considered diseases were highly diverse but
dominated by cancer, which had statistically significant
interactions with all other diseases. Depression, stroke, chronic
obstructive pulmonary disease (COPD), dementia, and
osteoporosis were involved in the most complex interactions
as they were the sole diseases involved in 5-way interactions.

Some of the most prevalent diseases, allergies and hypertension,
were not part of these complex relationships.

The chronic disease allergies were part of 5 interaction
relationships with other diseases, involving two 4-way, two
3-way, and a single 2-way interaction. Hypertension interacted
with 9 other diseases, involving four 4-way, three 3-way, and
two 2-way interactions. Notably, dementia and depression
appeared in higher-order interactions (two 5-way interactions)
despite having fewer co-occurrences in the population. Similar
patterns were observed for the DIO and stable models
(Multimedia Appendices 3 and 4). In both models, COPD,
dementia, stroke, and depression were involved in interactions
of the highest order. The DIO model included up to 5-way
interactions, also featuring complex interactions involving the
chronic diseases diabetes and cancer (Multimedia Appendix 3).
For the stable model, only up to 4-way interactions were
detected (Multimedia Appendix 4). In general, most of the
interactions between diseases identified in the ALL model were
also present in the DIO and stable models (Multimedia Appendix
5).
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Figure 3. Graphical representation of disease-disease interactions in the all interactions model. A ribbon connects chronic diseases that have any
significant interaction (P<.001) between them. The connection’s width corresponds to the number of individuals diagnosed with HD developing both
diseases throughout the observation period. The ribbon’s color represents the highest-order interaction relationship between 2 diseases. The ribbon chart
is ordered by number of connections between diseases, starting from allergies (AL) with 5 connections all the way to cancer (CAN), which interacts
with all the additional diseases. BP: back pain; COPD: chronic obstructive pulmonary disease; DEM: dementia; DEP: depression; DIA: diabetes; HC:
high cholesterol; HT: hypertension; JD: joint disease; OA: osteoarthritis; OP: osteoporosis; SCH: schizophrenia; ST: stroke.

Effects

Difference in Effect Estimates by Disease Portfolio Size
To evaluate how the effects of disease portfolios on time until
death differed between models with and without interactions,
we calculated the effect differences between the OME model
and the ALL model on the log-hazard rate scale, denoted as

. We focused on disease portfolios ranging from 2
to 8 diseases as these accounted for 98.95%
(1,671,575/1,689,297) of all disease portfolio observations of
size ≥2. The effects in the ALL model for each disease portfolio
were computed at mean age and calendar time levels,
aggregating over combinations of both sexes and all educational
attainment levels. To compute an overall estimate of the effect
differences between the models for each sex, we calculated a
weighted mean of the differences for each portfolio size. The

weights were determined by the prevalence of individual disease
portfolios across the different educational levels for each sex.
In Figure 4, the aggregated differences are displayed on the
hazard scale, indicating the multiplier required to convert the
HR from the OME model into the HR from the ALL model.
The figure illustrates substantial variations in disease portfolio
effects when interactions were excluded compared to when they
were included. The HR multiplier increased gradually for disease
portfolios of increasing size, flattening at approximately 1.4 at
disease portfolios of size 6. In general, for disease portfolios of
size 2, the HRs were, on average, slightly overestimated when
interactions were not modeled. However, for disease portfolios
of size ≥4, the HRs were, on average, underestimated for both
sexes. The underestimation also applies to female individuals
with disease portfolios of size 3. In general, the HR multiplier
was slightly greater for female individuals compared to male
individuals across all disease portfolios.
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Figure 4. Difference in effect estimates for disease portfolios of increasing size for female and male individuals. Each bar represents a weighted average
of the differences in effects between the additive only main effects (OME) model and the all interactions (ALL) model on the hazard scale exp(Inline
Graphic 3). Thus, the bars indicate the average multiplier required to convert the hazard ratio (HR) from the OME model into the HR from the ALL
model. The weights were determined based on the occurrence of each specific disease portfolio across the different educational attainment levels for
each sex.

Most Frequent Disease Portfolios
The effects of the 10 most frequent disease portfolio dyads,
triads, tetrads, and pentads are presented on the log-hazard scale
at increasing educational attainment levels for male individuals
in Figure 5 and for female individuals in Figure 6 based on the
ALL model. The associated HR estimates are presented in
Multimedia Appendices 6 and 7. Disease portfolios including
high cholesterol and allergies were of particular concern as
many of them had a negative effect, corresponding to a
decreased mortality hazard rate relative to an individual
diagnosed with HD who was not multimorbid. By comparing
effects of the disease portfolios from the ALL model to effects
from the OME model, generally, the direction of the effect
(positive or negative) agreed between the models for both male

and female individuals. However, the magnitude of the effects
was greater in the ALL model than in the OME model for almost
all disease portfolios, educational attainment levels, and sexes.
This indicates an underestimation of the risk associated with a
disease portfolio for the positive effects and an overestimation
for the negative effects. For some disease portfolios, an inverse
social gradient was visible in the educational dimension, where
the higher the educational attainment level, the greater the effect
of the disease portfolio (refer to, eg, the portfolio [diabetes,
hypertension] in Figure 5). Sex-related disparities in disease
portfolio effects were also evident. For disease portfolios
containing depression and osteoporosis, the effects of the
portfolios were greater for male individuals than for female
individuals, whereas for COPD, cancer, stroke, and diabetes,
the effects were greater for female individuals.
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Figure 5. Effects of the 10 most frequent disease portfolio dyads (A), triads (B), tetrads (C), and pentads (D). Effects are shown for male individuals
of varying educational attainment levels at the log-hazard rate scale. Comparisons are made to a male individual of the corresponding educational
attainment level who only has heart disease (HD). Effects are presented for the all interactions model (different shades of blue) and the only main effects
model (red). All comparisons are made at mean age and calendar time. HD is present in all disease portfolios. AL: allergies; BP: back pain; CAN:
cancer; COPD: chronic obstructive pulmonary disease; DEP: depression; DIA: diabetes; HC: high cholesterol; HT: hypertension; OA: osteoarthritis;
OP: osteoporosis; ST: stroke.
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Figure 6. Effects of the 10 most frequent disease portfolio dyads (A), triads (B), tetrads (C), and pentads (D). Effects are shown for female individuals
of varying educational attainment levels at the log-hazard rate scale. Comparisons are made to a female individual of the corresponding educational
attainment level who only has heart disease (HD). Effects are presented for the all interactions model (different shades of blue) and the only main effects
model (red). All comparisons are made at mean age and calendar time. HD is present in all disease portfolios. AL: allergies; BP: back pain; CAN:
cancer; COPD: chronic obstructive pulmonary disease; DEP: depression; DIA: diabetes; HC: high cholesterol; HT: hypertension; OA: osteoarthritis;
OP: osteoporosis; ST: stroke.

Most Complex Disease Portfolios
Figure 7 shows the effects of disease portfolios containing
combinations of stroke, osteoporosis, COPD, dementia, and
depression for male individuals with differing educational
attainment levels. These chronic diseases were all part of 5-way
interactions, making the effects associated with their portfolios
the most complex. For dyads, triads, tetrads, and pentads, the

OME model generally yielded lower effects than the ALL
model. This implies an underestimation of mortality risk in male
individuals for these portfolios when interactions were not
modeled. The underestimation was greatest for disease portfolios
involving dementia or stroke. Similar results were observed for
female individuals but also included a large underestimation of
mortality hazard rates for portfolios involving COPD
(Multimedia Appendix 8).
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Figure 7. Effects of disease portfolio dyads (A), triads (B), tetrads (C), and pentads (D) involving stroke (ST), osteoporosis (OP), chronic obstructive
pulmonary disease (COPD), dementia (DEM), and depression (DEP). Effects are shown for male individuals of varying educational attainment levels
at the log-hazard rate scale. Comparisons are made to a male individual of the corresponding educational attainment level who only has heart disease
(HD). Effects are presented for the all interactions model (different shades of blue) and the only main effects model (red). All comparisons are made at
mean age and calendar time. HD is present in all disease portfolios.

Disease Portfolios With the Highest Mortality Impact
Table 1 presents the largest HRs for disease portfolio dyads,
triads, and tetrads among male and female individuals.
Generally, the HRs of the disease portfolios were greater in
female individuals; however, the portfolio [schizophrenia]
exhibited a greater HR in male individuals. For dyads, the
portfolios [cancer], [dementia], [schizophrenia], [stroke], and
[COPD] ranked within the top 5 for both sexes. Notably,
[cancer] exhibited the largest HR (6.72 for male individuals and
7.59 for female individuals). When considering triads and
tetrads, cancer was similarly consistently featured in the top 5
portfolios for both sexes. This indicates that cancer contributes
to a greatly increased relative mortality risk whenever present.
Among triads, the portfolio [cancer, schizophrenia] had the
largest HR for male individuals (13.26) and the second largest
for female individuals (13.38). The top-ranking portfolio for

female individuals was [cancer, COPD] (HR=15.39), whereas
for male individuals, it was the second largest (HR=11.34).
Notably, 80% (4/5) of the tetrad portfolios with the highest
mortality impact included both cancer and COPD for male and
female individuals. As cancer was consistently present in the
triads and tetrads with the highest mortality impact, we
separately examined the triads and tetrads among portfolios
without cancer. The results are presented in Table 2. Upon
excluding cancer, we observed that portfolios including
dementia and schizophrenia were prominent in most of the triads
and tetrads with the highest mortality impact. Among tetrads,
the portfolios with the highest mortality impact for male
individuals always involved osteoporosis paired with dementia
or schizophrenia. In contrast, for female individuals, the tetrads
with the highest mortality impact typically consisted of stroke
in combination with dementia or schizophrenia.
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Table 1. The 5 largest hazard ratios (HRs) for dyad, triad, and tetrad disease portfolios.

Individualsc, n (%)HR (99.9% CI)bPortfolioaRank

Male individuals

Dyads (n= 188,910 )

6702 (3.55)6.72 (6.06-7.45)[CANd]1

1272 (0.67)3.99 (3.59-4.43)[DEMe]2

888 (0.47)3.04 (2.85-3.24)[SCHf]3

5722 (3.03)2.89 (2.66-3.14)[STg]4

7884 (4.17)2.81 (2.55-3.10)[COPDh]5

Triads (n= 229,552 )

66 (0.03)13.26 (11.50-15.29)[CAN, SCH]1

1356 (0.59)11.34 (9.89-12.99)[CAN, COPD]2

433 (0.19)10.35 (9.01-11.90)[CAN, OPi]3

131 (0.06)10.06 (8.38-12.07)[CAN, DEM]4

773 (0.34)9.87 (8.59-11.35)[CAN, ST]5

Tetrads (n= 195,248 )

28 (0.01)19.21 (16.33-22.60)[CAN, COPD, SCH]1

14 (0.01)16.82 (14.14-20.01)[CAN, SCH, ST]2

157 (0.08)16.40 (14.10-19.07)[CAN, COPD, OP]3

168 (0.09)15.92 (13.29-19.07)[CAN, COPD, ST]4

30 (0.02)14.71 (11.59-18.67)[CAN, COPD, DEM]5

Female individuals

D yads (n= 148,395 )

3559 (2.4)7.59 (6.83-8.43)[CAN]1

1180 (0.8)4.41 (3.98-4.89)[DEM]2

3386 (2.28)3.60 (3.27-3.97)[ST]3

4335 (2.92)3.57 (3.23-3.95)[COPD]4

663 (0.45)2.74 (2.56-2.92)[SCH]5

T riads (n= 190,272 )

622 (0.33)15.39 (13.51-17.53)[CAN, COPD]1

58 (0.03)13.38 (11.70-15.31)[CAN, SCH]2

90 (0.05)12.84 (10.60-15.56)[CAN, DEM]3

296 (0.16)12.65 (10.91-14.67)[CAN, ST]4

251 (0.13)10.44 (9.24-11.80)[CAN, DIAj]5

Tetrads (n= 177,755 )

14 (0.01)24.10 (20.45-28.41)[CAN, COPD, SCH]1

13 (0.01)23.13 (17.89-29.91)[CAN, COPD, DEM]2

54 (0.03)22.80 (18.84-27.59)[CAN, COPD, ST]3

20 (0.01)19.14 (15.03-24.37)[CAN, DEM, ST]4

168 (0.09)17.57 (15.06-20.48)[CAN, COPD, OP]5

aAll portfolios contain the HD diagnosis.
bThe reference group comprises male or female individuals with only heart disease (HD). HR estimates were aggregated on the log-hazard scale for
male and female individuals across all educational attainment levels using weights corresponding to the number of individuals with each portfolio within
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that subpopulation. Portfolios with <10 individuals were excluded.
cThe number of unique male or female individuals who had exactly this combination of diseases at any time during the observation period. Percentages
are among all male or female individuals observed with dyads, triads, and tetrads, respectively.
dCAN: cancer.
eDEM: dementia.
fSCH: schizophrenia.
gST: stroke.
hCOPD: chronic obstructive pulmonary disease.
iOP: osteoporosis.
jDIA: diabetes.
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Table 2. The 5 largest hazard ratios (HRs) for dyad, triad, and tetrad disease portfolios excluding portfolios with cancer.

Number of individualscHR (99.9% CI)bPortfolioaRank

Male individuals

Dyads (n= 182,208 )

1272 (0.7)3.99 (3.59-4.43)[DEMd]1

888 (0.49)3.04 (2.85-2.24)[SCHe]2

5722 (3.14)2.89 (2.66-3.14)[STf]3

7884 (4.33)2.81 (2.55-3.10)[COPDg]4

2341 (1.28)2.47 (2.26-2.69)[OPh]5

Triads (n= 206,638 )

257 (0.12)8.58 (7.49-9.84)[DEM, OP]1

380 (0.18)7.54 (6.58-8.65)[DEM, ST]2

177 (0.09)7.37 (6.58-8.24)[COPD, SCH]3

228 (0.11)7.12 (6.34-8.00)[DEM, SCH]4

117 (0.06)6.50 (5.80-7.28)[SCH, ST]5

Tetrads (n= 164,266 )

98 (0.06)13.37 (11.32-15.78)[DEM, OP, ST]1

52 (0.03)12.36 (10.46-14.61)[DEM, OP, SCH]2

19 (0.01)12.09 (10.21-14.31)[DEM, DIAi, OP]3

42 (0.03)11.90 (10.00-14.16)[COPD, DEM, OP]4

26 (0.02)11.72 (10.26-13.40)[COPD, OP, SCH]5

Female individuals

Dyads (n= 144,836 )

1180 (0.81)4.41 (3.98-4.89)[DEM]1

3386 (2.34)3.60 (3.27-3.97)[ST]2

4335 (2.99)3.57 (3.23-3.95)[COPD]3

663 (0.46)2.74 (2.56-2.92)[SCH]4

2939 (2.03)2.31 (2.18-2.44)[DIA]5

Triads (n= 174,861 )

268 (0.15)9.77 (8.49-11.24)[ST, DEM]1

113 (0.06)8.68 (7.36-10.24)[COPD, DEM]2

106 (0.06)8.44 (7.52-9.47)[COPD, SCH]3

324 (0.19)8.42 (7.27-9.75)[ST, COPD]4

649 (0.37)7.96 (6.99-9.06)[OP, DEM]5

Tetrads (n= 154,975 )

32 (0.02)16.65 (13.54-20.47)[COPD, DEM, ST]1

35 (0.02)15.04 (12.95-17.46)[DEM, DIA, ST]2

12 (0.01)14.79 (12.56-17.41)[COPD, SCH, ST]3

142 (0.09)14.58 (12.36-17.20)[DEM, OP, ST]4

72 (0.05)13.86 (11.51-16.70)[COPD, DEM, OP]5

aAll portfolios contain the HD diagnosis.
bThe reference group comprises male or female individuals with only heart disease (HD). HR estimates were aggregated on the log-hazard scale for
male and female individuals across all educational attainment levels using weights corresponding to the number of individuals with each portfolio within
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that subpopulation. Portfolios with <10 individuals were excluded.
cThe number of unique male or female individuals who had exactly this combination of diseases at any time during the observation period. Percentages
are among all male or female individuals observed with dyads, triads, and tetrads, respectively, excluding those with cancer.
dDEM: dementia.
eSCH: schizophrenia.
fST: stroke.
gCOPD: chronic obstructive pulmonary disease.
hOP: osteoporosis.
iDIA: diabetes.

Effect of Sex Across Socioeconomic Subpopulations
The complex interactions at play indicate that the effect of sex
on mortality varies by disease portfolio. This is illustrated in
Figure 8, which presents HRs comparing female to male
individuals across the 50 most prevalent disease portfolios at
different educational levels. Overall, the figure shows a decrease
in female mortality risk compared to male mortality risk, with
most HRs falling below 1, ranging from 0.41 ([hypertension,
allergies, osteoporosis]) to 0.93 ([stroke, high cholesterol,
diabetes] and [stroke, hypertension, high cholesterol, diabetes]).

However, the magnitude of this decrease varied across
comorbidity patterns. For example, portfolios that included
osteoporosis consistently showed HRs of <0.66, indicating a
notably lower mortality risk for female individuals with these
portfolios than for male individuals. Conversely, more complex
disease portfolios that included stroke and diabetes—such as
[stroke, hypertension, high cholesterol, diabetes] and [stroke,
hypertension, diabetes]—had HRs closer to 1, suggesting only
a slight reduction in female mortality hazard rate compared to
male mortality hazard rate.

Figure 8. Hazard ratios (HRs) of female (vs male) sex by disease portfolio and educational attainment level. Estimates for the 50 most common disease
portfolios are shown with 99.9% CIs. The estimates are presented for each of the educational attainment levels: none, short, medium, and long, indicated
by different shapes and always in ascending order from none to long. The reference group comprises male individuals with the same disease portfolio
and educational attainment level. The disease portfolios are ordered by prevalence from left to right, with [hypertension (HT)] being the most frequent
disease portfolio. All portfolios contain the heart disease (HD) condition, so it is not labeled in the plot. Therefore, the disease portfolio without a label
in the plot (the second from the left) corresponds to the disease portfolio with only HD. AL: allergies; BP: back pain; CAN: cancer; COPD: chronic
obstructive pulmonary disease; DEM: dementia; DEP: depression; DIA: diabetes; HC: high cholesterol; OA: osteoarthritis; OP: osteoporosis; ST: stroke.
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The Impact of COPD
To illustrate that the effect of a single disease varies depending
on the other diseases present in the portfolio, we estimated the
effect of COPD in each observed disease portfolio in the
population. The aggregated results are shown in Table 3 for

male and female individuals of increasing disease portfolio size.
The effect of COPD was greatest in triads (HR=2.81 for male
individuals and 3.57 for female individuals) and generally higher
in female than in male individuals. For increasing disease
portfolio sizes, the aggregated effect of COPD decreased
considerably with increasing disease portfolio sizes.

Table 3. Effect of chronic obstructive pulmonary disease (COPD) for increasing disease portfolio sizes. Each cell is the aggregated effect of COPD
(ie, hazard ratio [HR] comparing the portfolio with and without COPD). The effects were aggregated on the log-hazard scale using weights determined
based on the occurrence of each specific disease portfolio across the different educational attainment levels for each sex.

Disease portfolio sizeSex

8765432

1.912.082.272.502.742.982.81HR for male individuals

2.192.452.753.083.433.773.57HR for female individuals

Scenarios
We present 4 scenarios in Figure 9 to illustrate how the ALL
model’s estimates translate to the risk scale. In Figure 9A, we
show the first scenario, which consists of the trajectory of
schizophrenia followed by cancer and then dementia. The figure
illustrates an increase in the mortality rate with the additions of
schizophrenia and cancer to the disease portfolio. However,
when dementia diagnosis is obtained, its involvement in
interactions prevents a substantial increase in the mortality rate
compared to simply continuing undiagnosed. This is despite
dementia being the disease with the second-highest mortality
impact when considered in isolation (HR=3.99 for male
individuals and 4.41 for female individuals; Table 1). The
interaction effects between the diseases in the portfolio and
dementia create a situation in which adding dementia does not
further elevate the mortality hazard rate substantially.

Figure 9B shows a scenario that could resemble the disease
trajectory of a male heavy smoker. In this scenario, the patient
initially obtains HD diagnosis while also having hypertension

and high cholesterol. Over the following years, the patient
receives a diabetes diagnosis, which further elevates the
mortality risk. The risk accelerates even more with the addition
of a COPD diagnosis and, finally, a cancer diagnosis. In Figure
9C, a scenario showing the risk over time for a depression,
osteoporosis, and dementia trajectory at different educational
attainment levels for both the ALL and OME model is presented.
A deviation between the ALL and OME models is most visible
at the dementia disease, after which the risk in the ALL model
accelerates compared to that in the OME model. In addition,
the scenario visualizes that, despite the inverse social gradient
of the disease portfolios on the log-hazard scale (Figure 7),
lower educational attainment is still associated with a greater
risk of death. Another scenario illustrating this relationship is
presented in Figure 9D for a COPD, cancer, and dementia
trajectory. In this scenario, we observe general increased
mortality in male individuals compared to female individuals.
However, due to the HRs of the disease portfolios being greater
in female compared to male individuals (Table 1), the sex
difference decreases over time.
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Figure 9. Disease progression scenarios representing the mortality risk over time of a hypothetical (A) male individual with no education at mean age
and calendar time who develops schizophrenia (SCH), cancer (CAN), and dementia (DEM) at 2.6, 5.6, and 7.5 years, respectively, following heart
disease (HD) diagnosis; (B) male individual with no education who has hypertension (HT), high cholesterol (HC) at time of HD diagnosis and diabetes
(DIA), chronic obstructive pulmonary disease (COPD), and CAN at 2.3, 4.8, and 6.1 years, respectively, following HD diagnosis; (C) male individual
of varying educational attainment levels who develops depression (DEP), osteoporosis (OP), and DEM at 2.5, 5.9, and 7.5 years, respectively, following
HD diagnosis under the all interactions (ALL) model (solid lines) and the additive only main effects (OME) model (dashed lines); and (D) male (green
color) and female (red color) individual with no education who develops COPD, CAN, and DEM at 2.4, 5.8, and 8.0 years, respectively, following HD
diagnosis under the ALL model (solid lines) and the additive OME model (dashed lines).

Discussion

Principal Findings
Patients with HD will often be diagnosed with other chronic
diseases during their lifetime [2,5]. The effect of these
co-occurring diseases on adverse outcomes is an important
research focus as it is a clinically emerging challenge. In this
study on the effect of disease portfolios on time until death, an
extended Cox model allowing for time-varying covariates was
applied to a large, longitudinal dataset encompassing all Danish
adult patients with HD in the period from 1995 to 2015. We
identified interactions through a model and data-driven variable
selection procedure, revealing the severe diseases depression,
stroke, COPD, dementia, and osteoporosis as involved in the
most complex interactions. In addition, we estimated a simpler
additive model consisting solely of main effects, which, on
average, underestimated the effect of severe disease portfolios
by a factor of 1.4. We did this to elucidate the importance of
considering interaction effects when modeling the mortality
risk associated with multiple chronic diseases. To the best of
our knowledge, our work is the most extensive study examining

the effect of co-occurring diseases on mortality among patients
with HD.

We found that depression, stroke, COPD, dementia, and
osteoporosis were involved in interaction relationships of the
highest order, indicating that, when any of these diseases is
added to the disease portfolio of the patient with HD, its risk
contribution extensively depends on the other diseases already
in the portfolio or the intrinsic variables describing the patient.
These diseases were also identified under alternative variable
selection procedures. Our comparisons between the interaction
model and the simpler additive model showed differences in
the magnitude of the effects for several disease portfolios.
Overall, if interactions are not modeled, the average effect of
disease portfolios on time until death appears underestimated
for disease portfolios with >3 diseases (up to a factor of 1.4;
Figure 4). For female individuals, this average underestimation
also applied to disease portfolios of size 3. We observed an
inverse socioeconomic gradient in the educational dimension
for some of the most frequent and complex disease portfolios,
where the greater the educational attainment level, the greater
the associated HR of the disease portfolio (Figures 5-7;
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Multimedia Appendix 8). We found that cancer was present in
all cases in the disease portfolios with the highest mortality
impact (Table 1). When considering disease portfolios with the
highest mortality impact that did not include cancer, we
observed that the psychiatric diseases schizophrenia and
dementia frequently appeared in conjunction with osteoporosis
for male individuals and in conjunction with stroke for female
individuals (Table 2). Schizophrenia also often appeared with
cancer among the disease portfolios with the highest mortality
impact. These results highlight effect modification when
multiple diseases co-occur in the patient with HD, and therefore,
interventions should carefully evaluate the entire disease
portfolio of the patient with HD.

Effects and Interactions
The high complexity of the estimated interaction model is clearly
illustrated in Figure 3. The figure shows the many dynamics
between diseases at play in the HD population, where multiple
chronic diseases are rampant. Depression, stroke, COPD,
dementia, and osteoporosis were the chronic diseases included
in the most complex interactions, also allowing for interactions
between these and the patients’ intrinsic factors. When
considering interactions between chronic diseases exclusively
(the DIO model), we observed that cancer and diabetes were
also involved in the most complex interactions (Multimedia
Appendix 3). Interactions with the intrinsic variables sex and
age might trivially explain some of these interactions involving
cancer and diabetes, which could be why they were not
identified among the most complex interactions in the ALL
model. Nevertheless, most interactions between individual
chronic diseases identified in the ALL model variable selection
were similarly discovered in either the stable or DIO model
variable selections (Multimedia Appendix 5), indicating
robustness in the detected interactions.

The consequences of modeling effects of interactions are
meticulously visualized on the risk scale in the scenario
illustrated in Figure 9A, where the addition of dementia does
not change the risk profile of the hypothetical patient much as
he already has the severe diseases schizophrenia and cancer
along with HD. In fact, many of the effect modifications implied
by the presence of interactions led to an attenuation of the
combined effect of the diseases compared to their effects in an
additive model. Biologically, this is reasonable as the considered
patients are generally frail due to their HD, thereby causing the
continued addition of chronic diseases to increase frailty before
death eventually occurs. Our results showing the effect of COPD
decreasing for increasing disease portfolio sizes support this
finding (Table 3).

Our analysis showed that both the psychiatric diseases dementia
and long-term depression were involved in the most complex
interactions (Figure 3). Although not part of 5-way interactions,
schizophrenia was involved in 4-way interactions with several
other diseases. These high-order interaction effects in disease
portfolios with psychiatric diseases complicate the interpretation
of their impact on mortality as the effects of having these
psychiatric diseases depend heavily on the other chronic diseases
present in the portfolio, as well as on intrinsic factors such as
age, sex, and socioeconomic position. From a biological point

of view, this illustrates the interplay between somatic and
psychiatric diseases concerning mortality [37,38]. Studies report
increased prevalence and risk of psychiatric diagnoses for
patients with cardiovascular diseases and their risk factors [39],
and efforts should be made to improve these patients’
psychological function. In addition, several studies indicate an
increased mortality risk in psychiatric patients when
comorbidities are present [7,37,38]. Indeed, we also found that
the psychiatric diseases schizophrenia and dementia were present
in the disease portfolios with the highest HRs (Tables 1 and 2).
As a result, this study has substantial implications for the priority
of identifying psychiatric manifestations of multimorbidity
among patients with HD as mortality risk is heavily modified
when these diagnoses are present, at least among the chronic
diseases and the population considered in this study.

Cancer was present in all portfolio dyads, triads, and tetrads
with the highest HRs (Table 1). This finding is supported by
previous studies reporting that most deaths from cardiovascular
disease occur in patients diagnosed with breast, bladder, and
prostate cancer [40]. However, the cancer diagnosis in our study
encapsulated a larger spectrum of cancer conditions. Among
the triads and tetrads with the highest mortality impact, cancer
was often present with schizophrenia. However, when
considering portfolios excluding cancer, dyads with dementia
had a higher mortality impact. Previous research shows higher
cancer mortality rates in individuals with schizophrenia, often
attributed to factors such as nonadherence to treatment,
diagnostic overshadowing, and limited collaboration between
medicine and psychiatry [41]. For patients with HD, our results
highlight these combinations of diseases as having some of the
most substantial mortality impacts.

We note that, among the variables identified in higher-order
interactions, Figure 7 and Multimedia Appendix 8 show
differences in effects when comparing estimates from models
with and without interactions. These contrasts emphasize the
importance of considering the complete disease portfolio of a
patient with HD when assessing risk. Our findings show that,
when interactions are not recognized, the model underestimates
the effect of severe diseases such as cancer, stroke, and COPD
while overestimating the effect of less severe diseases such as
high cholesterol and allergies (Figure 5). A previous study
demonstrated the adverse impact of ignoring statistical
interactions in epidemiologic studies, showing a potential bias
in main effect parameter estimates [33], which could be a reason
for these observed differences. As the underestimation of effects
asserted itself even for disease portfolios of small size, it could
be attributed to the first few manifestations of multimorbidity
(ie, the first diseases developed after HD) being more important
for survival than later. While the risk continuously increases
with the addition of diagnoses, the individual disease effects do
not combine additively. As a result, some patients might reach
a high risk profile with just a few diagnoses, trivializing the
extra effect of obtaining a new diagnosis, as illustrated by the
scenario in Figure 9A. The situation illustrated in Figure 9A
with the mortality risk not changing with the addition of a (on
its own) deadly chronic disease can only be modeled when
interactions are allowed. We speculate that the simple additive
model breaks down due to situations such as these,

JMIR Cardio 2025 | vol. 9 | e57749 | p. 18https://cardio.jmir.org/2025/1/e57749
(page number not for citation purposes)

Holm et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


compensating the underestimation of the effect of severe
diseases with an overestimation of the effect of more common,
less severe diseases. While it was observed that, on average,
the additive model underestimated the effect of disease
portfolios (Figure 4), it is essential to mention that the individual
disease portfolio effect differences were aggregated across the
HD population.

In this study, we observed an apparent negative effect of the
high cholesterol diagnosis, indicating increased survival relative
to an individual without the disease. This artifact can be
attributed to the phenomenon that some individuals diagnosed
with HD who are also diagnosed with high cholesterol are likely
being treated with lipid-modifying agents such as statins, which
have many beneficial properties such as cholesterol reduction
and anti-inflammatory effects [42,43]. Despite having an
additional diagnosis, these individuals diagnosed with HD might
represent a less frail part of the HD population who might have
a higher degree of health literacy, thus being more aware of
their conditions and receiving attention from their general
practitioners. Another possible explanation is our use of
diagnosis time instead of the time of actual disease onset, which
was unknown. High cholesterol is a condition in which a
considerable amount of time may pass before diagnosis [44],
and among those patients with HD who are undiagnosed, some
may have the disease but not be undergoing treatment. It is also
essential to consider other consequences of multimorbidity.
Increased survival relative to an individual without a particular
disease may appear beneficial at first glance. However, it is
crucial to recognize that an additional chronic disease introduces
new challenges, such as new medication management,
consultations with general practitioners and specialists, and
potential functional impairments. It is essential to remember
that increased survival in these cases does not necessarily equate
to improved quality of life.

We found a more pronounced effect in disease portfolios
including osteoporosis in male individuals compared to female
individuals (Figures 5, 6, and 8; Table 1). Notably, despite the
generally higher prevalence of osteoporosis in female individuals
compared to male individuals, it is well documented that male
individuals diagnosed with osteoporosis experience higher
mortality rates than their female counterparts [45]. Our study
reaffirms this observation within a nationwide HD population.

Our findings revealed an inverse socioeconomic gradient for
some disease portfolios, where the isolated effect of disease
portfolios generally increased as educational attainment levels
rose (Figures 5-7; Multimedia Appendix 8). Thus, the higher
educated the patient, the higher the mortality hazard rate of the
disease portfolio compared to a person of the same educational
level with only HD. It is widely known that individuals with
higher levels of education enjoy better overall health and lower
mortality hazard rates than people with lower levels of education
[46]. Consequently, given that the reference patient with HD
who was not multimorbid was generally healthier in the
subpopulation with the highest educational attainment, it is
plausible that those who do become multimorbid in this
subpopulation experience a comparatively higher relative
mortality hazard rate. Hence, when interpreting this inverse
social gradient, it is important to bear in mind that the HR

reflects the increased relative mortality hazard rate associated
with having a specific multimorbid disease portfolio compared
to only having HD. Importantly, the inverse social gradient does
not directly translate to increased mortality with higher
educational level on the risk scale, as illustrated in Figure 7C.
Social disparities are extensively documented across various
aspects of multimorbidity, including prevalence [21], health
care use [47], and transitions between disease portfolios [28].
Our results contribute to this by revealing an inverse social
gradient concerning the isolated effect of combinations of
chronic diseases on mortality within a nationwide HD
population.

As clinical practice, such as guidelines, screening, testing, and
treatment for chronic diseases, evolved over the period from
1995 to 2015, our analysis was adjusted for calendar time at
HD diagnosis. We systematically assessed the influence of
calendar time on the most frequently observed disease portfolios.
Generally, we observed increased survival for patients diagnosed
more recently compared to earlier (of the 100 most common
portfolios, n=98, 98%). However, an inverse trend indicating
decreased survival over calendar time was observed for a few
disease portfolios, particularly for the portfolio [dementia] and,
in many cases, when dementia was combined with diabetes or
stroke. It is well known that demographic changes have caused
an increase in the prevalence of dementia over the years [48],
but as the model is conditional on the disease portfolio, an
increased prevalence of dementia over time does not in itself
explain the result. We currently lack an explanation for this
result and plan to further investigate it in future research.

Interpretations
This study illustrates that the complexity of addressing the
effects of multiple chronic conditions in a large, temporal dataset
requires consideration of the individual’s complete disease
portfolio. The extended Cox model used throughout this work
was chosen because it allows for modeling time-varying
variables in a survival context. In addition, it has the advantage
of making no assumptions regarding the distribution of the
survival times (ie, the underlying hazard function is left
unspecified [49]). However, a few assumptions were made about
the hazard function, namely, the relationship between covariates
and the hazard function. By examining Schoenfeld residuals,
we found that, in some cases, the proportional hazard assumption
was not fully supported [31], meaning that the effects might
vary across time. Therefore, it is essential to interpret the
presented effects as weighted averages of the true, possibly
time-varying effects across the entire observation period [50].
There are previous studies on the effect of multimorbidity on
time to death within HD populations [5,7]. However, the
analyses conducted in these studies do not acknowledge that a
patient’s multimorbidity state is likely to change dynamically
through time (ie, that it is time dependent). The differences in
prevalence at time t=0 and the end of the observation period
(Figure 2) in this study illustrate much progression in disease
portfolios. Thus, it is essential to consider this when conducting
a temporal statistical analysis. When interpreting effects, it is
crucial to keep the population in mind. As the study population
was selected and followed up on from the time of HD diagnosis,
the individuals considered were generally ill compared to, for
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example, an individual without any chronic diseases.
Furthermore, with Denmark being a European welfare state,
the population differs from those of many other countries where
individuals may have to pay for examinations; thus, the effects
might not be directly comparable due to variations in treatment
accessibility.

It is crucial to elaborate further on the contrasts associated with
the presented effect estimates. The estimates presented compare
a patient with HD who is not multimorbid to a patient with HD
who is multimorbid with a specific disease portfolio. In the
OME model, the effect of comparing, for example, a patient
with HD diagnosed with cancer and COPD to a patient with
HD who is not multimorbid would be the same as comparing
a patient with HD who also has cancer, COPD, and depression
to a patient with HD who also has depression. In other words,
the effect of a disease combination in an additive model can be
interpreted as having the specific combination of diagnoses in
the disease portfolio versus not having it. However, in the
presence of high-order interactions, the interpretation is only
the increased (or decreased) effect comparing an individual with
the particular disease portfolio to an individual without it. This
is due to the possibility of interactions with other variables,
which modify the effects of the disease combination.

The scenarios in Figure 9 were created to illustrate the workings
of the extended Cox model by illustrating how the model
estimates the mortality risk over time for the hypothetical
individuals diagnosed with HD. However, one should be careful
in interpreting these scenarios. They cannot be used
prognostically to forecast as time points of portfolio expansions
are never known at the time of HD diagnosis as that would be
conditioning on future events. These scenarios were solely
constructed to represent how the model depicts the mortality
risk of a “typical” patient with HD over time. The figures help
illustrate how the interaction effects on the log-hazard scale
relate to the risk of mortality on the probability scale.

For the results presented in this paper, it is essential to
emphasize that the effects and interactions uncovered represent
associations, not causal relationships. While our results provide
valuable insights into the relationships among the chronic
diseases, they should be interpreted as observational
associations, which can be informative for hypothesis generation
and risk assessment for individual portfolios. Furthermore, a
considerable group of individuals had missing educational
attainment information in this study. In our analyses, we
modeled missing values as separate categories. We also
estimated the final ALL model under the multiple imputation
framework [51], which led to similar results as those presented.

Strengths and Weaknesses
The main strength of this study is the entire Danish population
of individuals diagnosed with HD observed over a long period

using register data. Danish register data are generally of high
quality and fully representative of the entire Danish population
[52]. In addition, the use of algorithmic diagnoses processing
both International Classification of Diseases, 10th Revision,
diagnosis history and Anatomical Therapeutic Chemical
medicine history ensured that the HD population covered both
the primary and secondary parts of the Danish health care
system. However, there are several limitations associated with
this study. Given the observational nature of this study, our
results do not enable us to draw causal conclusions. In addition,
despite the algorithmic diagnoses previously being shown to
be reliable [18], a chronic disease’s true onset comes before
diagnosis. This is less of a challenge when diagnoses are
considered in a cross-sectional study than in a longitudinal
setting. Therefore, as time stamps for true disease onsets are
not possible, it is crucial to interpret the longitudinal effects
associated with a diagnosis in the context of exactly a diagnosis
(ie, the detection of the disease), where the individual may have
been ill for some time before that.

Conclusions
In conclusion, we emphasize the importance of considering a
patient’s entire disease portfolio when assessing or modeling
risk, avoiding oversimplified silo-based generalizations about
the effect of individual diseases. This study highlights the
importance of modeling interaction effects when chronic
diseases co-occur. Omitting these interactions can result in
underestimation of the elevated mortality risk associated with
multimorbidity in patients with HD. Through our analysis of a
comprehensive nationwide longitudinal dataset of 766,596
patients with HD, we identified sex-related and socioeconomic
disparities in disease portfolio HRs. Notably, an inverse
socioeconomic gradient was systematically observed for the
most common and complex disease portfolios, meaning an
increased mortality hazard rate with multimorbidity relative to
no multimorbidity as educational attainment level increases.
However, absolute mortality risk still decreased with increasing
educational attainment due to baseline effects of education.
Cancer was present in all disease portfolios with the highest
mortality impact. Excluding cancer, disease portfolios including
psychiatric chronic diseases were of the highest mortality
impact. We identified interactions among all considered
co-occurring chronic diseases. We found that stroke,
osteoporosis, COPD, dementia, and depression were integral
components of the most complex interactions of the highest
order. When these chronic diseases co-occur in the patient with
HD, their contribution to the patient’s risk profile depends on
multiple factors, encouraging a holistic view of the patient’s
entire disease portfolio along with their demographic and
socioeconomic risk factors.
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Algorithmic diagnoses. Algorithms used to define the 15 diagnoses.
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Multimedia Appendix 2
Prevalence of diagnoses according to sex.
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Multimedia Appendix 3
Graphical representation of disease-disease interactions in the disease interactions only model. A ribbon connects chronic diseases
that have any significant interaction (P<.001) between them. The connection’s width corresponds to the number of individuals
diagnosed with HD developing both diseases throughout the observation period. The ribbon’s color represents the highest-order
interaction relationship between 2 diseases. The ribbon chart is ordered by number of connections between diseases, starting from
allergies with 5 connections all the way to cancer, which interacts with all the additional diseases
[PNG File , 397 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Graphical representation of disease-disease interactions in the stable model. A ribbon connects chronic diseases that have any
significant interaction (P<.001) between them. The connection’s width corresponds to the number of individuals diagnosed with
HD developing both diseases throughout the observation period. The ribbon’s color represents the highest-order interaction
relationship between 2 diseases. The ribbon chart is ordered by number of connections between diseases, starting from high
cholesterol with 1 connection all the way to chronic obstructive pulmonary disease, which interacts with 11 of the additional
diseases. Back pain does not interact with any chronic disease in this model.
[PNG File , 297 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Diagnosis-diagnosis interactions identified across the all interactions model, the disease interactions only model, and the stable
model. A cell in the table indicates under which models arising from the different variable selection procedures an interaction
between the row and column condition is identified. Due to symmetry, only half of the table is presented.
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Multimedia Appendix 6
Male hazard ratios (HRs) for the 10 most common disease portfolio dyads, triads, tetrads, and pentads. The results are presented
for the all interactions model at the 4 educational attainment levels (none, short, medium, and long) and correspond to the situation
presented in Figure 5. The reference group comprises male individuals with only heart disease and the corresponding educational
attainment level. Results are also presented for the additive only main effects model. In each disease portfolio group, the disease
portfolio HR estimates are presented in order of prevalence, with the upper rows being more prevalent than the lower rows.
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Multimedia Appendix 7
Female hazard ratios (HRs) for the 10 most common disease portfolio dyads, triads, tetrads, and pentads. The results are presented
for the all interactions model at the 4 educational attainment levels (none, short, medium, and long) and correspond to the situation
presented in Figure 6. The reference group comprises female individuals with only heart disease and the corresponding educational
attainment level. Results are also presented for the additive only main effects model. In each disease portfolio group, the disease
portfolio HR estimates are presented in order of prevalence, with the upper rows being more prevalent than the lower rows.
[DOCX File , 23 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Effects of disease portfolio dyads (A), triads (B), tetrads (C), and pentads (D) involving stroke, osteoporosis, chronic obstructive
pulmonary disease, dementia, and depression. Effects are shown for female individuals of varying educational attainment levels
at the log-hazard rate scale. Comparisons are made to a female individual of the corresponding educational attainment level who
only has heart disease (HD). Effects are presented for the all interactions model (different shades of blue) and the only main
effects model (red). All comparisons are made at mean age and calendar time. The HD condition is present in all disease portfolios.
[PNG File , 168 KB-Multimedia Appendix 8]
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